Swimming speeds of larval coral reef fishes: impacts on self-recruitment and dispersal
نویسنده
چکیده
The dispersal of larvae during their time in the pelagic environment is critically important to our understanding of marine populations. Recent publications have highlighted the potential importance of larval behaviour in influencing dispersal patterns of larval reef fishes. However, it has not been clearly established if their abilities are of a magnitude comparable to the potential effects of oceanic processes and whether larval behaviour is sufficient to facilitate self-recruitment. This study presents new data on the swimming speed of late-stage larvae to determine how they can swim relative to oceanic currents. The families examined comprised the Acanthuridae, Siganidae, Lutjanidae, Lethrinidae, Pomacentridae, Chaetodontidae, Nemipteridae, Monacanthidae, Psuedochromidae, Pomacanthidae and Apogonidae. The late-stage larvae of all reef fish families examined were able to swim at speeds greater than the mean transport speeds reported around reefs in most locations. However, even the best-swimming reef fish families could not swim faster than the maximum current speeds reported. Based on new and previously published data it appears that the development of swimming ability can be described adequately (80% of variation explained) as a linear increase from zero at hatching to a species-specific maximum at settlement. Calculations based on this developmental pattern suggest that most reef fish families could substantially influence their dispersal patterns relative to ocean currents for over 50% of their larval phase. For all families examined, swimming behaviour could potentially affect dispersal patterns on a magnitude similar to the dispersing effect of oceanic currents. In addition, the swimming capabilities of several reef fish families have the potential to facilitate active self-recruitment in a range of reef systems.
منابع مشابه
Spatial and temporal distribution of larvae of coral reef fishes in northern Red Sea, Egypt
The larval community of coral reef fishes in the Red Sea was studied in coastal and offshore sites to determine the effects of the exposure to waves and currents and the distance from the shore in structuring the larval fish community. Plankton sampling from inshore and offshore sites and the exposed and sheltered sides of the reefs resulted in the collection of 2048 larvae representing 49 diff...
متن کاملSeascape and life-history traits do not predict self-recruitment in a coral reef fish
The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable for most marine metapopulations. Here, we assess patterns of larval dispersal in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using parentage and sibli...
متن کاملSpatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms.
Oceanographic features influence the transport and delivery of marine larvae, and physical retention mechanisms, such as eddies, can enhance self-recruitment (i.e. the return of larvae to their natal population). Knowledge of exact locations of hatching (origin) and settlement (arrival) of larvae of reef animals provides a means to compare observed patterns of self-recruitment 'connectivity' wi...
متن کاملSpatial and temporal distribution of larvae of coral reef fishes in northern Red Sea, Egypt
The larval community of coral reef fishes in the Red Sea was studied in coastal and offshore sites to determine the effects of the exposure to waves and currents and the distance from the shore in structuring the larval fish community. Plankton sampling from inshore and offshore sites and the exposed and sheltered sides of the reefs resulted in the collection of 2048 larvae representing 49 diff...
متن کاملFrom record performance to hypoxia tolerance: respiratory transition in damselfish larvae settling on a coral reef.
The fastest swimming fishes in relation to size are found among coral reef fish larvae on their way to settle on reefs. By testing two damselfishes, Chromis atripectoralis and Pomacentrus amboinensis, we show that the high swimming speeds of the pre-settlement larvae are accompanied by the highest rates of oxygen uptake ever recorded in ectothermic vertebrates. As expected, these high rates of ...
متن کامل